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Abstract 

The Hill determinant method is shown to be suitable for constructing potential energy 
curves of diatomic molecules. Both the Dunham and the pemgbed Morse oscillator poten- 
tials are used to fit spectroscopic data. Results are shown for ionic and covalent molecules. 

1. Introduction 

The Hill determinant method (HDM) proves to be a simple way of obtaining 
highly accurate eigenvalues [1]. It was first applied to one-dimensional problems with 
parity-invariant potentials and central-field models [1]. Recently, Estrfn et al. [2,3] have 
shown that more general problems can also be treated, and they discussed the calcula- 
tion of rotation-vibration eigenvalues of diatomic molecules. To this end, they con- 
sidered different potential energy curves obtained from fitting spectroscopic data. 

The inverse problem, i.e. the construction of potential energy curves from spectra, 
is by far more interesting and several procedures have been proposed to solve it. The 
Rydberg-Klein-Rees 0tKR) method [4] is widely used, although it is a semi-classical 
approximation that only yields the classical tuming points corresponding to the eigen- 
energies. 

The potential energy curve proposed by Dunham [5], 

V(r) = a0x2(1 + alx  + a2 X2 + . . . ), x = (r - r ) / r ,  (1) 

where r and r are the intemuclear distances at a general point and at equilibrium, 
respectively, proves to be accurate enough around x = 0. However, owing to the pole 
at r = 0, the series (1) has a finite convergence radius which limits its applicability. 

Several methods for improving the convergence properties of the Dunham series 
have been developed. Among them, we mention the Pad6 approximants [6] and series 
of the form: 
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V(r) = V0f(x)(1 + V l f ( x  ) + V2f(x)2 + . . . }, (2) 

wheref(x) is a properly chosen fimction [7-9]. Some of these approaches are accurate 
enough provided they are applied to either ionic [6] or covalent [9] molecules. 

A systematic procedure for obtaining quite accurate potential energy curves from 
the Dunham coefficients a, has recently been presented by Arteca et al. [10]. This is 
based on a nonlinear transJfonnation of the variable x that takes into account the large- 
r behavior of the actual V(r). This method yields a sequence of polynomials that appear 
to converge smoothly to V(r). The  convergence rate is larger in the case of ionic 
molecules than in the case of covalent molecules. 

A different approach, called the perturbed Morse oscillator (PMO) approach, has 
been developed by Huffaker [111. It consists of writing V(r) as 

o o  

V(r) = D ( q  2 + ~,  b i q ' ) ,  (3) 
i = 4  

where q = 1 - exp{a(r - r)}, and D, a, and r are the parameters of the Morse 
oscillator [11]. The coefficients b. are determined by fitting the spectrum [11]. ) 

In order to obtain the coefficients a,, Dunham [5] fitted the spectrum with 
the following polynomial function of the v~brational (v) and rotational (J)quantum 
numbers: 

Ev,j = ~., ~,  Yjk (1) + 1 / 2)JJ(J + 1) k. (4) 
j k 

The coefficients a. and Y., are related through the WKB quantization formula [5]. 
R t 1~ ecently, Ogilvie and Koo [12] have put forward an iterative procedure for obtaining 
the ai's from the Y~k's, and Niay et al. [13] have calculated the former coefficients without 

• 1 

previous determination of the latter. In both cases, a semiclassical approximation was 
used. 

The main disadvantage of the WKB method is that it may not be accurate enough 
for the lowest energy levels.* Totally quantum-mechanical methods are also available. 
For instance, the inverse perturbation approach (IPA) developed by Kosman and 
Hinze [14] has been successfully applied by Vidal [15] and Hamilton et al. [16]. It 
consists of systematically correcting an appropriate trial potential by means of properly 
chosen functions and experimental energy levels. 

In this paper, the HDM is shown to be suitable for constructing potential energy 
curves of diatomic molecules from limited experimental data. A generalized version of 
the HDM is briefly summarized in section 2, and the calculation of the first coefficients 
aj is discussed in section 3. They are used to build [2/2] Pad6 approximants [6] and the 

*Note added in proof: The expression obtained by Dunham by means of the WKB method agrees exactly 
with the perturbation theory result (Kilpatrick, J. Chem. Phys. 30(1959)801). For this reason, the former 
applies even for the ground vibration-rotational state. 
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sequence of polynomials of  ref. [10] for twenty alkali halides whose dissociation 
energies are estimated. The first coefficients b. of  the PMO (3) are obtained in 

l 
section 4 for the CO molecule. 

2.  The generalized H D M  

The present method applies when the Schrl3dinger equation can be reduced to a 
Sturm-Liouville problem 

{P(q) d2/dq 2 + Q(q) d/dq + R(E,q)} T(q) = 0, (5) 

where R(E,q) depends parametrically on the energy E and T(q) satisfies given bound- 
ary conditions at q = a and q = b. We first find a function T 0 so that F = T / T  0 can be 
adequately expressed as a Taylor series around q = 0. The new function F(q) is a 
solution of 

p tt • {P dZ/dq z + ( a P T ; +  Q) d/dq + ( Wo']W o + QWo/To + R)}F = 0, (6) 

where T o = dTo/d q, etc. Therefore, if 

2 P =  pjqJ,  2PW~/edo + Q =  ] ~ q j q J ,  
j = 0  / = 0  

oo 

PW'o'~?o + Qed'o/edo +R = ~, *) q J, (7) 
j=0 

the coefficients of  the expansion 

F =  ~ j ~ q J  (8) 
j=o 

satisfy the difference equation 

rl 

{ ( j +  l ) ( j +  2)pn-jfj+2 + (j+ 1)qn- j f j+ l  + rn- j f j}  = 0, (9) 
j=0 

where n = 0 ,  1 . . . . .  
It is clear that every coefficient fj can be written 

f j = A j f o + B j f  1, j = O ,  1 . . . . .  (10) 

where A. and B.  are two solutions of eq. (9) with the boundary conditions A o = B 1 = 1 
l l 

and A.  = B~ = 0.  The coefficients A. and B.,  j > 1, depend on the energy, and it is 
l u l 1 

assumed that the roots of the simultaneous equations fu  + 1 =fN + 2 = 0 tend to the actual 
eigen-values as N increases. These equations become 
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A N + I (E)B  N + 2(E) - A  N + 2(E)B m + I(E) = O. (11) 

Although no rigorous proof of  the above-mentioned assumption has yet been 
given, the HDM has proved to be highly accurate [1-3]. Its most appealing feature is 
its simplicity. In fact, it reduces to obtaining the coefficients A. and B. through the 

1 J 
recurrence relation (9) and then calculating the roots of eq. (11) for increasing N values. 
The convergence of the procedure is immediately checked. Since only two vectors have 
to be stored, the HDM is suitable for microcomputer calculations. 

For highly excited states, eq. (11) may become numerically unstable. In that case, 
the user must obtain the eigenvalues from the roots of the secular determinant associated 
with the difference equation (9). 

3. The Dunham series 

We now consider the application of the HDM to the vibration-rotation motion 
of diatomic molecules. The radial part of the time-independent SchrOdinger equation 
can be written (units are chosen so that h = # = 1) 

(r 2 dZ/dr 2 + 2r2{E - V(r)} - J ( J  + 1))~(r) = 0, (12) 

where Ur'(0) = ur'(r -+ ,,~) = 0 and J = 0 ,  1 . . . .  is the angular momentum quantum number. 
In order to express V(r) as a Dunham series (1), we choose q =  r - r  and 

• 0= exp(-flq2/2), where 132= dZV/drZ(r = re). The difference equation follows im- 
mediately from the fact that P(q)  = (q + re)z, Q(q)  = O, and R(q)  = 2P(q) { E -  V(r(q) )  } 
-J(J + 1). If n vibrational eigenvalues for a given J value are available from the 
spectrum, then there will be n equations like eq. (11) which enable one to determine 
rn < n Dunham coefficients a. by means of (say) the Newton-Raphson method. A least- 
squares method may be use~ when m < n. 

On using the first four vibrational eigenvalues for J = 0 obtained from the 
spectroscopic constants tabulated in ref. [17], we have calculated the coefficients a., 
j < 3, for twenty alkali halides (table 1). Present results are in acceptable agreement w i ~  
previous ones [6], and other energy levels obtained from them proved to reproduce the 
experimental information accurately (proved by using the HDM). 

In order to see the effect of  the input data on the results, we have repeated the 
calculation with the energy levels obtained from the spectroscopic constants reported by 
Brumer and Karplus [18]. Large differences are found for some molecules. For instance, 
in the case of  LiC1 we have a o = 146455.5 cm -1, a 1 = -2.52155, a a = 3.67604, and 
a 3 =-3 .22597  (cf. table 1). However, we choose the energy levels of  Varshni and 
Shukla [17] to compare present results with those of  refs. [6] and [10]. 

The main disadvantage of  the HDM is that it is unsuitable for handling highly 
excited vibrational energy levels or too shallow potentials. This is due to the fact that 
the harmonic-oscillator ground state ~0 is not adequate when V(r) differs too much from 
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Table 1 

Dunham coefficients a. for several alkali halides obtained from the fkst four vibrational 
energy levels for J = 0 Jcalculated by means of the spectroscopic constants given in ref. [ 17] 

a o (cm q )  a 1 a z a 3 

LiF 154044.5 -2.42405 3.37762 -2.75536 

LiC1 145403.5 -2.43607 3.43451 -2.93152 

LiBr 142938.8 -2.64053 4.03220 -3.71183 

LiI 140021.1 -2.76310 4.41604 -4.25903 

NaF 164397,5 -2.78741 4.49968 -4.41416 

NaCI 152421.1 -2.83571 4.67002 -4.77422 

NaBr 147261.7 -2.76844 4.45771 -4.50248 

NaI 142572.1 -2.85973 4.75767 -4.97653 

KF 164358.7 -2.92609 4.96523 -5.16522 

KC1 152427.3 -3.01363 5.28002 -5.78045 

KBr 147848.3 -3.05408 5.42819 - 6.08718 

KI 142892.3 -3.06120 5.39482 -5.61299 

RbF 165347.6 -2.92164 4.95723 -5.20957 

RbC1 155335.9 -3.12456 5.68001 -6.49600 

RbBr 151048.1 -3.12064 5.67236 -6.57158 

RbI 146074.0 -3.19378 5.94321 -7.08005 

Cs F 168542.0 -2.96521 5.11846 -5.51021 

CsC1 159154.9 -3.20323 5.97144 -7.02461 

CsBr 154907.6 -3.15968 5.81699 -6.85607 

CsI 150307.7 -3.27964 6.26854 -7.79946 

½ / 3 2 ( r  - re)2. However, in most cases of  practical interest the HDM proves to be a 
valuable quantum-mechanical alternative or complementary technique. 

To further check the quality of the coefficients in table 1, we build the whole 
curve V(r) (r > r) by means of the [2/2] Pad6 approximants [6] and the polynomial 
sequence of  order 2 and 3 of  ref. [ 10]. The dissociation energies (D) obtained from these 
approaches are compared with the experimental ones (Dxp) in table 2. The agreement 
is remarkable in most cases. 

When using the coefficients a of table 1, the Pad6 approximants [6] prove to be 
l 

more accurate than the polynomial sequences [10], as shown in table 3. On the other 
hand, the latter are found to yield better results if the coefficients reported by Jordan et 
al. [6] are considered. 

In some cases, particularly those with large errors, the accuracy of  the calculated 
dissociation energy can be dramatically improved by using the more accurate spectro- 
scopic constants reported by Brumer and Karplus [18] (see LiC1 in table 2). 
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Table 2 

Percent deviation for the dissociation energy d = 100 (1 - D/D ) obtained e.xp 
from (a) second- and (b) third-order polynomial sequences [10] and (c) [2/2] 
Pad~ approximants [6]. Results in parentheses for LiC1 were obtained from 
the energy levels given in ref. [18]. 

d a d b d e 

LiF -3.4 7.4 3.8 

LiC1 -15.2 -3.1 -7.7 
(-8.2) (3.1) (-1.1) 

LiBr -0.7 9.9 5.9 

LiI -2.0 8.7 4.7 

NaF -0.4 10.1 6.1 

NaC1 -3.7 7.2 2.8 

NaBr -9.4 2.3 -2.5 

NaI -7.8 3.6 0.3 

KF -0.9 9.7 5.5 

KC1 -3.6 7.3 2.8 

KBr -3.0 8.9 4.4 

KI -3.7 7.2 3.4 

RbF -5.2 5.8 1.4 

RbC1 -0.7 9.9 5.4 

RbBr -2.8 8.1 3.4 

RbI -0.4 10.3 5.6 

CsF -6.1 4.9 0.3 

CsC1 -1.3 9.4 4.9 

CsBr -3.7 7.4 2.6 

CsI -1.8 9.1 4.3 

Table 3 

Average percent absolute deviation (Av) for the dissociation energy when 
using the coefficients a. of (1) table 1 and (2) ref. [6]. (a), (b), and (c) have ] 
the same meaning as in table 2 

a b c 

(1) 3.8 7.5 3.9 

(2) 2.1 6.0 5.9 
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4. The PMO 

The SchrOdinger equation for the potential (3) in terms of  the variable q is a 
particular case ofeq.  (5), with P(q) = a2(1 - q)2, Q(q) = _a2(1 _ q), R(E, q) = E - V(r(q)) 
- J ( J +  1)/r(q) 2. If we choose Wo=,3, b/'2°-y12~ , where y = 2 d ( 1 - q ) ,  d=(2D)lC2/a, and 
b Z = - 8 E / a  z, then we have (cf. eq. (9)): 

(3.+ 1 ) ( j +  2)fj+2 - ( J+  1 ) ( b -  2 d +  2 j +  1)3~+ 1 

+ { j ( j -  1 ) + j ( b - 4 d +  1)+  2d 2 + d ( b +  1)}fj 

J 
- {2d 2 - 2 d ( / ' -  1 ) -  d ( b +  1)}3~-1 - d  2 ~ r i f j - i  = O. 

i = 0  

(13) 

The coefficients r~ are easily obtained from eq. (3) and the expansion of 1/r(q) 2 in a 
power series of  q [3]. 

The CO molecule is chosen to illustrate the method because there are enough 
available experimental data to check the results. On using the experimental vibration- 
rotation energy levels E j given in ref. [19], we have tried the following strategies: 

(a) The Morse parameters 

D = 88887.12 cm q, ar = 2.618415 (14a) 
e 

are chosen so that the two first Morse eigenvalues agree with the actual energy levels 
[19] and then 

b 4 = - 8 . 0 9 7  × 10 -3, b 5 = -0 .35634 ,  b 6 = 0.44799, b 7 = 0.01735 (14b) 

are obtained from eq. (11) with N = 26 (convergence up to the last figure) and E = E o, 
l < v < 6 .  

(b) We first calculate the Dunham coefficients ao=  609518.22 cm -1 and 
al = -2.694300 as discussed in the previous section by means of  E o, v < 3 [19], from 
which 

D = 83964.32 cm q, ar = 2.69430 (15a) 
e 

are derived. Then, 

b 4 = 0.0345136, b 5 = 0.133682, b 6 = 0.10083, b 7 = 0.06261 (15b) 

are computed through eq. (11) with N = 26 and E = E o, 1 < 1) < 6. 

(c) D and a r  are calculated as in (b) and 
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b 4 = 0.0284018, b 5 = 0.0748523, b 6 = 0.056665, b 7 = -0.53513 (16) 

from eq. (11) with N =  26 and E=Ev. o, 0 <  v < 4 .  Although somewhat different, all 
these potentials yield the energy levels used in the calculation of the b,'s exactly up to 
the last figure. Other eigenvalues are given with reasonable accuracy as shown in 
table 4, where present results are compared with experimental data. In order to check 
eigen-values with J ~ 0, we have applied the HDM to the PMO with the coefficients bj 
given by Huffaker [11]. 

Table 4 

Vibration-rotat ion eigenvalues (in cm -1) of the CO molecule obtained by means of the 
PMO parameters given in eqs. (14) (A); (15) (B); and (16) (C). Present results are compared 
with (a) experimental data, and (b) a calculation carried out with the PMO of ref. [11] 

V J (A) (13) (C) (a) (b) 

0 0 1081.6565 1081.7721 - 1081.7778 - 

0 2 1093.1936 1093.3075 1093.3129 - 1093.3126 

1 0 3225.0281 3225.0489 - 3225.0502 

4 0 - - 9496.127 9496.2497 - 

We conclude that it is more convenient to derive the Morse parameters D and 
a r  from the Dunham series than from equating the Morse eigenvalues with the experi- 
mental energy levels. 

5. Conclusions 

An alternative method for constructing diatomic potential energy curves has been 
presented. Since it is completely based on quantum-mechanical principles, it is prefer- 
able when the available experimental data are restricted to the small quantum numbers. 
For the same mason, the HDM is expected to yield reliable coefficients of  the Dunham 
series (1). In addition to this, the algorithm is so simple that the calculation can be 
carried out on a microcomputer. 

The main disadvantage of the present procedure is that it cannot handle in a 
simple way highly excited vibrational energy levels, and is useless when the potential 
function is too shallow. However, in most cases the HDM may be suitable either for 
constructing the curve or for checking the potential obtained through other tech- 
niques [2,3]. 
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